55.1, a gene of unknown function of phage T4, impacts on Escherichia coli folate metabolism and blocks DNA repair by the NER.
نویسندگان
چکیده
Phage T4, the archetype of lytic bacterial viruses, needs only 62 genes to propagate under standard laboratory conditions. Interestingly, the T4 genome contains more than 100 putative genes of unknown function, with few detectable homologues in cellular genomes. To characterize this uncharted territory of genetic information, we have identified several T4 genes that prevent bacterial growth when expressed from plasmids under inducible conditions. Here, we report on the various phenotypes and molecular characterization of 55.1, one of the genes of unknown function. High-level expression from the arabinose-inducible P(BAD) promoter is toxic to the bacteria and delays the intracellular accumulation of phage without affecting the final burst size. Low-level expression from T4 promoter(s) renders bacteria highly sensitive to UV irradiation and hypersensitive to trimethoprim, an inhibitor of dihydrofolate reductase. The delay in intracellular phage accumulation requires UvsW, a T4 helicase that is also a suppressor of 55.1-induced toxicity and UV sensitivity. Genetic and biochemical experiments demonstrate that gp55.1 binds to FolD, a key enzyme of the folate metabolism and suppressor of 55.1. Finally, we show that gp55.1 prevents the repair of UV-induced DNA photoproducts by the nucleotide excision repair (NER) pathway through interaction with the UvrA and UvrB proteins.
منابع مشابه
55.1, a gene of unknown function of phage T4, impacts on Escherichia coli folate metabolism and blocks DNA repair
Phage T4, the archetype of lytic bacterial viruses, needs only 62 genes to propagate under standard laboratory conditions. Interestingly, the T4 genome contains more than 100 putative genes of unknown function, with few detectable homologues in cellular genomes. To characterize this uncharted territory of genetic information, we have identified several T4 genes that prevent bacterial growth whe...
متن کاملReference 55 . 1 , a gene of unknown function of phage T 4 , impacts on Escherichia coli folate metabolism and blocks DNA repair
Phage T4, the archetype of lytic bacterial viruses, needs only 62 genes to propagate under standard laboratory conditions. Interestingly, the T4 genome contains more than 100 putative genes of unknown function, with few detectable homologues in cellular genomes. To characterize this uncharted territory of genetic information, we have identified several T4 genes that prevent bacterial growth whe...
متن کامل55.2, a Phage T4 ORFan Gene, Encodes an Inhibitor of Escherichia coli Topoisomerase I and Increases Phage Fitness
Topoisomerases are enzymes that alter the topological properties of DNA. Phage T4 encodes its own topoisomerase but it can also utilize host-encoded topoisomerases. Here we characterized 55.2, a phage T4 predicted ORF of unknown function. High levels of expression of the cloned 55.2 gene are toxic in E. coli. This toxicity is suppressed either by increased topoisomerase I expression or by parti...
متن کاملExpression of a cloned denV gene of bacteriophage T4 in Escherichia coli.
A 713-base-pair Hae III fragment from bacteriophage T4 encompassing the denV gene with its preceding promoter has been cloned in a pBR322-derived positive-selection vector and introduced into a variety of DNA repair-deficient uvr and rec and uvr,rec Escherichia coli strains. The denV gene was found to be expressed, probably from its own promoter, causing pyrimidine dimer incision-deficient uvrA...
متن کاملExonuclease III and endonuclease IV remove 3' blocks from DNA synthesis primers in H2O2-damaged Escherichia coli.
Escherichia coli deficient in exonuclease III (xth gene mutants) are known to be hypersensitive to hydrogen peroxide. We now show that such mutants accumulate many more DNA single-strand breaks than do wild-type bacteria upon exposure to H2O2. DNA isolated from H2O2-treated xth- cells contains strand breaks that do not efficiently support synthesis by E. coli DNA polymerase I, indicating the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 82 6 شماره
صفحات -
تاریخ انتشار 2011